Stimulation Effect of Exosome From Healthy Sera to Natural Killer (NK) Cells of Hepatocellular Carcinoma Subject In Vitro
Abstract
Background: Hepatocellular carcinoma has a poor prognosis due to limitations of therapy such as late diagnosis, lack of specific biomarkers, and insensitivity to this tumor agent. This study aims to develop immunotherapy using autologous natural killer cells (NK cells) with exosome stimulation for hepatocellular carcinoma patients, addressing treatment limitations.
Methods: Experimental research conducted from October 2022 to June 2023 at Universitas Indonesia’s Faculty of Medicine involved three hepatocellular carcinoma patients at Dr. Cipto Mangunkusumo General Hospital in Jakarta, Indonesia. NK cells from hepatocellular carcinoma patients were isolated from peripheral venous blood, and exosomes were isolated from the blood serum of healthy donors. Exosome characterization with a particle size analyzer and flow cytometry. Stimulation of exosomes on NK cells for 24 hours, then evaluation of expression of NKp44, NKp46, NKp30, NKG2D, KIR2D, and NKG2A receptors, as well as perforin and granzyme B expression. Visualization of interactions of NK cells with other mononuclear cell fractions (CD4, CD8, CD11c, and CD19) by immunofluorescence. The study compares stimulated and unstimulated NK cells, analyzing their expression of activated and inhibitory receptors, using either the One-Way Anova parametric test or the Kruskal-Wallis non-parametric test for non-normally distributed data.
Results: Particle size < 100 nm, negative electric charge, and CD63+CD81+ (double positive) exosome isolated results. There was increased expression of receptors NKp44, NKp46, NKp30, NKG2D, decreased expression of NKG2A, and increased expression of perforin and granzyme B in exosome-induced NK cells. There was no cell interaction in the form of immune synapses between exosome-induced NK cells and other mononuclear cell fractions in hepatocellular carcinoma patients.
Conclusions: Induction of exosomes into NK cells of hepatocellular carcinoma patients restores the cytotoxic ability of NK cells
Keywords
DOI: 10.33371/ijoc.v18i4.1122
Article Metrics
References
World Health Organization. WHO cancer regional profiles 2020 (global profile) : Most common cancer cases 2018 [Internet]. 2020 [cited 2022 Mar 16]. Available from: https://www.who.int/teams/noncommunicable-diseases/surveillance/data/cancer-profiles
Global Cancer Observatory. Estimated number of new cases in 2020 [Internet]. 2020 [cited 2022 Mar 16]; Available from: http://gco.iarc.fr/
Global Cancer Observatory. Number of new cases in 2020 [Internet]. 2020 [cited 2022 Mar 16]. Available from: https://gco.iarc.fr/
Chen X, Chi H, Zhao X, Pan R, Wei Y, Han Y. Role of Exosomes in Immune Microenvironment of Hepatocellular Carcinoma. J Oncol. 2022;2022:1-15.
Friedman D. The impact of substrate stiffness on Natural Killer cell function [dissertation]. Manchester: University of Manchester; 2018.
Han Q, Zhao H, Jiang Y, Yin C, Zhang J. HCC-Derived Exosomes: Critical Player and Target for Cancer Immune Escape. Cells. 2019;8(6):558.
Liu, Y., Cheng, Y., Xu, Y. et al. Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers. Oncogene. 2017;36:6143–6153
Lim SA, Kim J, Jeon S, Shin MH, Kwon J, Kim TJ, Im K, Han Y, Kwon W, Kim SW, Yee C, Kim SJ, Jang JY, Lee KM. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol. 2019;10:496.
Dean, I., Lee, C.Y.C., Tuong, Z.K. et al. Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity. Nat Commun. 2024;15:683.
Yu Y. The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers (Basel). 2023 Apr 16;15(8):2323.
Jewett A, Kos J, Kaur K, Safaei T, Sutanto C, Chen W, Wong P, Namagerdi AK, Fang C, Fong Y, Ko MW. Natural Killer Cells: Diverse Functions in Tumor Immunity and Defects in Pre-neoplastic and Neoplastic Stages of Tumorigenesis. Mol Ther Oncolytics. 2019;16:41-52.
Antarianto, R. D., Verna, F. D., Pangjaya, L. F., Khaerunissa, S., Lestari, R., & Anggraeni, T. D. Karya Tulis (Artikel) "Generasi Sel NK Terinduksi Peptide (PiNK=Peptide Induced NK Cell) Sebagai Imunoterapi Sel Untuk Ca Ovarium". EC00201986832. 2019.
Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J. Hematol. Oncol. 2019;12:53.
Larssen P. Advances in exosome-mediated immunotherapy and diagnostics[dissertation]. Stockholm: Karolinska Institutet; 2018.
Jiang K, Dong C, Yin Z, Li R, Mao J, Wang C, et al. Exosome-derived ENO1 regulates integrin α6β4 expression and promotes hepatocellular carcinoma growth and metastasis. Cell Death and Disease. 2020;11:972
Khaerunnisa S. Analisis ekspresi gen Nidogen-1(NID1) pada lisat hasil ultrasentrifugasi jaringan ovarium sebagai ligan spesifik reseptor NKp44 sel Natural Killer pasien kanker ovarium [Skripsi]. Depok: Universitas Indonesia; 2021.
Pangjaya LF. Analisis kokultur galur sel kanker ovarium manusia SKOV-3 dengan sel Natural Killer yang diinduksi lisat hasil ultrasentrifugasi jaringan ovarium menggunakan teknik flow cytometry [skripsi]. Depok: Universitas Indonesia;2021.
Miltenyi Biotec. Human NK cell Isolation Kit. 2019:1-2. Available from : https://static.miltenyibiotec.com/asset/150655405641/document_geh73eknot6qnfnk6pp6hbu92o/IM0001512.PDF?content-disposition=inline
Yuan JS, Ann R, Feng C, C Neal S. Statistical analysis of real-time PCR data. Biomed Central. 2006;7(85):1-12.
Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1-43.
Li DS, Luo H, Ruan H, Chen Z, Chen S, Wang B, et al. Isolation and identification of exosomes from feline plasma, urine and adipose-derived mesenchymal stem cells. BMC Vet. Res. 2021;17:272.
Yang ZJ, Bi QC, Gan LJ, Zhang LL, Wei MJ, Hong T, et al. Exosomes derived from glioma cells under hypoxia promote angiogenesis through up-regulated exosomal connexin 43. Int. J. Med. Sci. 2022;19(7):1205-1215.
Barranco I, Padilla L, Parrilla I, Barrientos AA, Patino CP, Pena FJ. Extracellular vesicles isolated from porcine seminal plasma exhibit different tetraspanin expression profiles. Sci. Rep. 2019;9:11584.
Oboshi W, Aki K, Tada T, Watanabe T, Yukimasa N, Ueno I, et al. Flow cytometry evaluation of surface CD56 espression on activated natural killer cells as functional marker. J. Med. Invest. 2016;63(3-4):199-203.
Viaud S, Terme M, Flament C, Taieb J, Andre F, Novault S, et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation : a role for KNG2D ligands and IL-15α. PloS one. 2009;4(3):1-12.
Boyoadzis M, Hong CS, Whiteside TL. Anti-Leukemia effects of NK cell derived exosomes. Blood. 2019;134.
Kamiya T, Seow SV, Wong D, Robinson M, Campana D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Invest. 2019;129(5):2094-2106.
Campbell KS, Yusa SI, Maki AK, Catina TL. NKp44 triggers NK cell activation through DAP12 association that is not influenced by putative cytoplasmic inhibitory sequence. J Immunol.2004;172(2):899-906.
Ko SF, Yip HK, Zhen YY, Lee CC, Lee CC, Huang CC, et al. Adipose-Derived Mesenchymal Stem Cell Exosomes suppress hepatocellular carcinoma growth in a rat model: Apparent diffusion coefficient, natural killer T-cell responses, and histop
athological features. Stem Cells Int. 2015:1-10.
Kim IY, Kim HY, Song HW, Park JO, Choi YH, Choi E. Functional enhancement of exosomes derived from NK cells by IL-15 and IL-21 synergy against hepatocellular carcinoma cells: The cytotoxicity and apoptosis in vitro study. Heliyon. 2023;9:1-13.
Orange JS. Formation and function of the lytic NK-cell immunological synapse. PMC. 2008;8(9):713-725.
Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell-cell interactions and communication from gene expression. Genetics. 2021;22:71-88.
Vazquez CG, Beltri CV, Mittelbrunn M, Madrid FS. Transfer of extracellular vesicles during immune cell-cell interaction. Immunol. Rev. 2013;251:125-142.
Vyas YM, Mehta KM, Morgan M, Maniar H, Butros L, Jung S. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated non-cytolytic and cytolytic interactions. J. Immunol. 2001;167(8):4358-67.
Blanca IR, Bere EW, Young HA, Ortaldo JR. Human B cell activation by autologous NK cells is regulated by CD40-CD40 ligand interaction : Role of memory B cell and CD5+ B cells. J. Immunol. 2001;167(11):6132-9.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



